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Today’s Outline
Lecture 1: foundations of quantum computation 

-how universal quantum computer works 

 elementary gates, Solovay-Kitaev algorithm 

-how quantum algorithms work 

 Hadamard test, Kitaev’s phase estimation, Shor’s algo. 

-how complex quantum states are described efficiently 

 Stabilizer formalizam, quantum error correction code,
measurement-based quantum computation
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π/8 gate：T = e�i(⇡/8)Z
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unitary Solovay-Kitaev(U,n){!
! ! ! ! if (n==0){ return basic approximation of U}!            
   !! ! ! else{ !         
! ! ! ! ! ! Un-1=Solovay-Kitaev(U,n-1);!                  
           ! ! ! V,W s.t. VWV†W†=UU†n-1             	
       
                  	
 	
 	
 Vn-1 = Solovay-Kitaev(V,n-1);!            

           ! ! ! Wn-1 = Solovay-Kitaev(V,n-1);!       
! ! ! !  }!            
   !! ! ! return  Vn-1Wn-1Vn-1†Wn-1†Un-1          	
         
                   O(logc(1/�))

Dawson-Nielsen, QIC 6, 81 (2006)

Solovay-Kitaev algorithm

;

}
;
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How quantum algorithms  
work
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Hadamard test

|+i X

… …

… …
U| i

p+ =
1

2
(1 + Reh |U | i)

S
p+ =

1

2
(1 + Imh |U | i)

By repeating the Hadamard test,!
we can obtain a matrix element of !
the unitary U.

If         is an eigenstate of U, we can !
estimate an eigenvalue of U. 
| i

e�iHtEi



DQC1

|+i X

… …

… …
UI/2n

Tr[U ]/2n

[Morimae-KF-Fitzsimons, PRL ’14; KF et al., arXiv:1509.07276]

fidelity decay, Jones polynomial, 
HOMFLY polynomial….
[Poulin et al., PRL 92, 177906 (2004). 	

Shor-Jordan, QIC 8, 681 (2008)]	


Not universal but still useful….

[Knill-Laflamme, PRL 81, 5672 (1998) ; G. Passante et al., PRL 103, 250501 (2009)]
deterministic quantum computation with one-clean qubit

http://jp.arxiv.org/abs/1509.07276


Hadamard test

|+i X

… …

… …
U| i

p+ =
1

2
(1 + Reh |U | i)

Accuracy of estimation →1/poly(N)!

Can we improve the accuracy? !
Yes, if U has a special property!
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Quantum Fourier 
transformation
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{j1, j2, ..., jn}

e2(⇡i)0.j1j2...jn
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Shor’s factoring algorithm

Let N be an integer that we want to factorize.

Fact 2: r is even with a high probability.

N = 15

(x

r/2 � 1)(x

r/2
+ 1) = 0 mod NFinally we obtain                                                            .

GCD of                     and N is the factor of N!  (xr/2 ± 1)
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How complex quantum states 
are described efficiently



 n-qubit system

|�n� =
�

s1,s2,...,sn

cs1s2...sn |s1s2 . . . sn�

|s1� � |s2� � · · · � |sn�

Stabilizer formalism

Exponentially many parameters!
≡



 n-qubit system

|�n� =
�

s1,s2,...,sn

cs1s2...sn |s1s2 . . . sn�

|s1� � |s2� � · · · � |sn�

Stabilizer formalism

Exponentially many parameters!

→ Stabilizer formalism

[D. Gottesman, Ph.D. thesis, California Institute of Technology 
(1997); arXiv:quant- ph/9705052.]

Resource states for MBQC, Quantum error correction codes
(also utilized in condensed matter physics, and particle physics) 

≡
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 n-qubit Pauli group:

{±1,±i}⇥ {I,X, Y, Z}⌦n 2 Pn

Stabilizer group

e.g.

even overlap (anti-comm.)×2 = comm.

 Stabilizer group               : hermitian and Abelian subgroup of!
                                               the Pauli group

hXX,ZZi = {II,XX,ZZ,�Y Y }

S = {Si}

stabilizer generator!
= maximum independent subset 

Si 2 P, Si = S†
i , [Si, Sj ] = 0

e.g.
16 elements A⌦B = AB

{±1,±i}⇥ {II, IX, IY, IZ, ..., ZZ}
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 Stabilizer state

• Stabilizer group is Abelian and hence simultaneously diagonalized.
• It is enough to check for all generators.

(|00�+ |11�)/
�

2
Bell stateexample1:

S1 = �XX, ZZ�

Stabilizer state

Si| i = | i for all Si 2 S

example2:
S2 = �ZZ�

subspace spanned by
{|00i, |11i}

n qubits space → dim=2n

Si

+1

-1

Sj

+1 -1

stabilizer!
subspace
dim=2n-2



 Stabilizer state

• Stabilizer group is Abelian and hence simultaneously diagonalized.
• It is enough to check for all generators.

(|00�+ |11�)/
�

2
Bell stateexample1:

S1 = �XX, ZZ�

Stabilizer state

Si| i = | i for all Si 2 S

example2:
S2 = �ZZ�

subspace spanned by
{|00i, |11i}

# of qubit n, # of stabilizer generators k,!
the dimension of the stabilizer subspace→ d = 2n�k



Clifford operator：Map a Pauli product to another Pauli product!
! ! ! ! → a stabilizer state to another stabilizer state.

“Heisenberg picture of"
quantum computation” 

[Schrödinger][Heisenberg]

Si| i = | i
hSii

hS0
ii

S0
i| 0i = | 0i

UU

| i

| 0i = U | iS0
i = USiU

†



Clifford operator：Map a Pauli product to another Pauli product!
! ! ! ! → a stabilizer state to another stabilizer state.

“Heisenberg picture of"
quantum computation” 

[Schrödinger][Heisenberg]

Si ! S0
i = USiU

†

Si| i = | i
hSii

hS0
ii

S0
i| 0i = | 0i

UU

| i

| 0i = U | iS0
i = USiU

†



Application of stabilizer formalism: 
Quantum error correction codes
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environmentqubit

entangle with environment = decoherence

• Quantum state is parameterized by complex variables.

• no-cloning theorem→cannot copy it to protect
[Wootters-Zurek82]
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Quantum error correction 
codes

environmentqubit

entangle with environment = decoherence

• Quantum state is parameterized by complex variables.

• no-cloning theorem→cannot copy it to protect
[Wootters-Zurek82]

http://www-
math.mit.edu/~shor/

Peter Shor

Quantum error correction code [Shor95]
“fight entanglement with entanglement”
[Preskill97]

↵|0i+ �|1i ! |↵|2|0ih0|+ |�|2|1ih1|



Classical error correction： 0 → 000, 1 → 111
Quantum error correction：| i ! | i| i| i |0i ! |000i

|1i ! |111i
↵|0i+ �|1i ! ↵|000i+ �|111i

{

Quantum error correction 
code
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Classical error correction： 0 → 000, 1 → 111
Quantum error correction：| i ! | i| i| i |0i ! |000i

|1i ! |111i
↵|0i+ �|1i ! ↵|000i+ �|111i

{

Protect quantum information from a single bit-flip error.

ZZI
IZZ

+1

-1

+1 -1

|000i, |111i |001i, |110i

|010i, |101i|100i, |011i

IIX
XII

IXI

stabilizer !
generators

Quantum error correction 
code

anti-commute with!
stabilizer generators!
→map the state to!
the orthogonal space !

but still superposition!
is preserved!
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Stabilizer codes  
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A stabilizer code is a quantum code defined as a stabilizer subspace: 

| i = Si| i for all Si 2 Sn

dim = 2^(# of qubit - # of generators)

How can we specify the encoded (logical) degree of freedom?



Stabilizer codes  
and logical operator

Logical operators: commute with & independent of the stabilizer group

S = hZZI, IZZi LX = XXX,LZ = IIZ,ex)

{|000i, |111i}→ IIZ|111i = �|111i, XXX|000i = |111i

logical operators act nontrivially inside the code space

A stabilizer code is a quantum code defined as a stabilizer subspace: 

| i = Si| i for all Si 2 Sn

dim = 2^(# of qubit - # of generators)

How can we specify the encoded (logical) degree of freedom?
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S4 = XZIZX

25 / 24 = 2 dimensional subspace

Si| Li = | Li
stabilizer operators

5-qubit code
For all stabilizers,
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S4 = XZIZX

25 / 24 = 2 dimensional subspace

Si| Li = | Li

Anti-commute with any single Pauli error,!
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" " " " "               

stabilizer operators

XL = X⌦5, ZL = Z⌦5
→Logical Pauli operators

act on the code space nontrivially.

5-qubit code
For all stabilizers,



S1 = ZXXZI

S2 = IZXXZ

S3 = ZIZXX

S4 = XZIZX

25 / 24 = 2 dimensional subspace

Si| Li = | Li

Anti-commute with any single Pauli error,!
X,Y Z．!
→an arbitrary single-qubit error is 
corrected."
" " " " "               

stabilizer operators

XL = X⌦5, ZL = Z⌦5
→Logical Pauli operators

act on the code space nontrivially.

5-qubit code
For all stabilizers,

2^5=32 dimensions
2^4=16 orthogonal subspace
{X,Y,Z}×5 qubits = 15
15+1=16
# of errors = # of orthogonal subspaces! 



X

Y

Y

X

X

Y

YX

….

stabilizers act trivially on the code space!
→equivalent class of logical operators

・Ryu-Takayanagi formula!
・AdS-Rindler/ causal wedge reconstruction!
! (boundary reconstruction of bulk operators)!   
! logical qubitsphysical qubits

[HaPPY, JHEP ’15]

A toy model for AdS/CFT 

enconding isometry

↵|0i+ �|1i

U
= ui

j1j2j3j4j5 |j1j2j3j4j5ihi|

2-dim subspace of 25-dim space



Application of stabilizer formalism: 
measurement-based QC



 Definition of a graph state
graph G=(V,E)

V: vertices，E:edges

X
Z

Z
Z

A stabilizer generator is defined for 
each vetex

Ki = Xi

Y

j⇠i

Zj

Ki|Gi = |Gi for all i 2 V

Graph (cluster) state
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 Definition of a graph state
graph G=(V,E)

V: vertices，E:edges

X
Z

Z
Z

A stabilizer generator is defined for 
each vetex

Ki = Xi

Y

j⇠i

Zj

Ki|Gi = |Gi for all i 2 V

Graph (cluster) state

|Gi =
Y

e2E

⇤e(Z)|+i⌦|V |
CZ gate

Ki =

"
Y

e2E

⇤(Z)

#
Xi

"
Y

e2E

⇤(Z)

#



1D graph (cluster) state
 3-qubit 1D graph state
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XZ Z
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1D graph (cluster) state
 3-qubit 1D graph state

X Z
XZ Z

XZ

1p
2
(|+i|0i|+i+ |�i|1i|�i)

X Z
XZ Z

XZ Z
XZ

1

2
(|+i|0i|0i|+i+ |+i|0i|1i|�i

+ |�i|1i|0i|+i � |�i|1i|1i|�i)

 4-qubit 1D graph state



 2D cluster state
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projective measurement

2D resource state
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X ZZ

Z

Z
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measurement-based quantum computation
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 2D cluster state

Raussendorf-Briegel PRL 86 910 (2001); Raussendorf-Browne-Briegel PRA 68 022312 (2003).

projective measurement

2D resource state

i i +e

i +n

i +w

i +s

Ki = XiZi+nZi+eZi+sZi+w

X ZZ

Z

Z

=

space

time

U1

U2

U3

U4

U5

MBQC
measurement-based quantum computation

• Entangling operations are required only offline.!
• Provide a connection between many-body physics.



How quantum computer works 
 →H, π/8gate, CNOT, Solovay-Kitaev algo. 
!
How quantum algorithm works 
 →estimation of eigenvalues of  
  unitary operators 
!
How quantum states are efficiently described 
 → not by the state but the operators that stabilize  
  the state

Summary


