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Outline of 3 Days
Lecture 1: foundations of quantum computation 
-elementary gates and universal quantum computation 
-quantum algorithms 
-quantum stabilizer formalism (graph state, quantum error correction)

Lecture 2: 1D quantum system
-what is quantum phase  

-how it is useful for QIP

Lecture 3: 2D quantum system
-topologically ordered system 
-how it is related to quantum error correction codes 
-how topologically protected quantum computation works



Application of stabilizer formalism: 
measurement-based QC



Stabilizer group: Sn ⇢ Pn Hermitian Abelian subgroup

Stabilizer code states: 

| i = Si| i for all Si 2 Sn

Logical operators: commute with / independent of the stabilizer group
S = hZZI, IZZi LX = XXX,LZ = IIZ,ex)

{|000i, |111i}→ IIZ|111i = �|111i, XXX|000i = |111i
logical operators act nontrivially inside the code space

Stabilizer formalizm

h{Si}istabilizer group is specified by the set of generators             .



 Definition of a graph state
graph G=(V,E)

V: vertices，E:edges
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A stabilizer generator is defined for 
each vetex

Ki = Xi
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Ki|Gi = |Gi for all i 2 V
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 4-qubit 1D graph state
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Raussendorf-Briegel PRL 86 910 (2001); Raussendorf-Browne-Briegel PRA 68 022312 (2003).

projective measurement

2D resource state

i i +e
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i +w

i +s
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Z
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space

time
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U4

U5

MBQC
measurement-based quantum computation

• Entangling operations are required only offline.!
• Provide a connection between many-body physics.



Outline of 3 Days
Lecture 1: foundations of quantum computation 
-elementary gates and universal quantum computation 
-quantum algorithms 
-quantum stabilizer formalism (graph state, quantum error correction)

Lecture 2: 1D quantum system
-what is quantum phase  

-how it is useful for QIP

Lecture 3: 2D quantum system
-topologically ordered system 
-how it is related to quantum error correction codes 
-how topologically protected quantum computation works



What is quantum phase? 
!

How is it useful for QIP? 
!

How is it realized  
in a physically natural 1D system?

Keywords: Majorana fermion, symmetry protected 
topological order, AKLT state 

Today’s topic



What is quantum phase?
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of many-body systems.



What is quantum phase?

h

hOi = h g.s.|O| g.s.i
order parameter

critical point

H + h
X

i

Zi

• The concept of “phase” is robust, and hence it would 
be useful for quantum information processing.

• Quantum phase is a property of ground state (g.s.) 
of many-body systems.



• The degeneracy of g.s. and its robustness against 
perturbation.
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• The degeneracy of g.s. and its robustness against 
perturbation.

Degeneracy in g.s.

h

hOi = h g.s.|O| g.s.i
order parameter

critical point

H + h
X

i

Zi

gapped & 
degenerated

• Quantum information can be encoded into the g.s. 
and computation can be done inside the g.s.

→ how robust? & how computation is done?



1D Ising model
• Ising model with open boundary condition:

HIsing = �
N�1X

i=1

ZiZi+1

ZZ|00i = |00i, ZZ|11i = |11i(recall that                                                     )

• The g.s. is degenerated: {|0...0i, |1...1i}

SHIsingS
† = HIsing

global spin flip (Z2)

S =
Y

i

Xi
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SHIsingS
† = HIsing

global spin flip (Z2)

S =
Y

i

Xi

stabilizer generators

logical 
operator

code space
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1D Ising model
• Is the ground state degeneracy robust?

↵|0...0i+ �|1..1i not robust! 

H 0 = HIsing + �
X

i

Zi
small perturbation

|0...0i |1...1i
g.s.

|1...1i

|0...0i
�N

In the large N limit, the g.s.d. is lifted down, 
so is not protected against perturbations.

Is there a g.s.degeneracy which is robust against perturbations?
Yes.→ topologically ordered system
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What is topological order
-a new kind of order in zero-temperature phase of matter. 

-cannot be described by Landau’s symmetry breaking argument. 

-ground states are degenerated and it exhibits long-range 
quantum entanglement.

-the degenerated ground states cannot be distinguished by local 
operations.

-topologically ordered states are robust against local 
perturbations.

-related to quantum spin liquids, fractional quantum Hall effect, 
fault-tolerant quantum computation.



Outline of Lecture 2,3

Today: 
symmetry protected topological order 
in 1D quantum many-body system

Tomorrow: 
genuinely topologically ordered system in  
2D quantum many-body system and quantum  
error correction codes



1D Ising model

|0...0i |1...1i
g.s.

|1...1i

|0...0i
�N

The g.s. degeneracy would be protected by symmetry.

what if this kind of perturbation  
is prohibited by …. symmetry

H 0 = �
N�1X

i=1

ZiZi�1 + �
X

i

Zi+
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1D Majorana fermion

Ising model:

Let us consider a mathematically equivalent but physically 
different system.

H 0 = �
N�1X

i=1

ZiZi�1

Jordan-Wigner transformation
(spin ⇄ fermion)

(Majorana fermion operator)

â2i�1 = X1...Xi�1Zi

â2i = X1...Xi�1Yi

{âk, âk0} = 2�k,k0I

2N spinless !
Majorana fermions:

p-wave superconductor, topological insulator, semiconducting heterostructure
(see A. Kitaev and C. Laumann, arXiv:0904.2771 for review )

HMaj = �
N�1X

j=2

(�i)â2j â2j+1

+



・・・
paired

ground states: for all i.(�i)â2iâ2i+1| i = | i

1D Majorana fermion
unpaired Majorana fermion

HMaj = �
N�1X

j=2

(�i)â2j â2j+1

â1 â2 â3 â2N�1 â2N



・・・
paired

ground states: for all i.

unpaired Majorana fermions     at the edges of the chain.
→ “zero-energy Majorana boundary mode” {|0̄�, |1̄�}

(�i)â2iâ2i+1| i = | i

1D Majorana fermion
unpaired Majorana fermion

HMaj = �
N�1X

j=2

(�i)â2j â2j+1

â1 â2 â3 â2N�1 â2N



but fermion operators always !
appear as a pair!

(Z2 symmetry)
(act on the ground subspace nontrivially)If unpaired Majonara fermions are well 

separated, this operator would not act. 

Y1X2...X2N�1Y2N Z1
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(�i)â1â2N |0̄i = |1̄i, (�i)â1â2N |1̄i = |0̄i, â1|1̄i = �|1̄i
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=symmetry

logical operator!
(low weight)!
=prohibited



・・・
c1 c2 c3 c4 c2N�1 c2N

paired

ground states: for all i.

unpaired Majorana fermions     at the edges of the chain.
→ “zero-energy Majorana boundary mode”

X1(Z2 symmetry)
(act on the ground subspace nontrivially)

{|0̄�, |1̄�}

If unpaired Majonara fermions are well 
separated, this operator would not act. 

(�i)â2iâ2i+1| i = | i

(�i)â1â2N |0̄i = |0̄i, (�i)â1â2N |1̄i = |1̄i, â1|0̄i = |1̄i

1D Majorana fermion
unpaired Majorana fermion

HMaj = �
N�1X

j=2

(�i)â2j â2j+1

Y1X2...X2N�1Y2N

but fermion operators always !
appear as pairs!

Unpaired Majorana fermions (g.s. degeneracy)!
is robust against any physical perturbation,!
which preserves the fermionic parity (symmetry).

Symmetry protected 
topological (SPT) order



[Jiang et al., Phys. Rev. Lett 2011]

Majorana fermion

pair creation of 
Majorana fermions

exchanging Majorana 
fermions via T-junction

[Alicea et al., Nature Physics 2011]

1D p-wave superconductor; spin-orbit-coupled semiconducting wire on s-
wave superconductor; topological insulator; cold atom in optical lattice



[Jiang et al., Phys. Rev. Lett 2011]

Majorana fermion

pair creation of 
Majorana fermions

exchanging Majorana 
fermions via T-junction

[Alicea et al., Nature Physics 2011]

1D p-wave superconductor; spin-orbit-coupled semiconducting wire on s-
wave superconductor; topological insulator; cold atom in optical lattice

by Cassio Amorim



How SPT ordered states  
are useful for QIP?



H1dcluster = �
N�1X

i=2

Zi�1XiZi+1

1D Cluster Hamiltonian

stabilizer generators

X1Z2

Z1X2Z3

ZN�2XN�1ZN

ZN�1XN

1D cluster state



H1dcluster = �
N�1X

i=2

Zi�1XiZi+1

1D Cluster Hamiltonian

stabilizer generators

missing generators

→The g.s. has 4-fold degeneracy.

X1Z2

Z1X2Z3

ZN�2XN�1ZN

ZN�1XN

1D cluster state
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•Z2×Z2 symmetry:



1D Cluster Hamiltonian

H1dcluster = �
N�1X

i=2

Zi�1XiZi+1

S
o

H
1dcluster

S†
o

= H
1dcluster

, S
e

H
1dcluster

S†
e

= H
1dcluster

S
o

:=
Y

k

X2k�1, S
e

:=
Y

k

X2k

•Global spin flip operators on either odd or even qubits:

•Z2×Z2 symmetry:

Any local perturbation commuting with the symmetry operators cannot !
lift down the g.s. degeneracy.

Xk, ZkZk+2
[J. Pachos and M. Plenio, PRL 2004; W. Son et al., EPL 2011]



Cluster Phase

H 0 = H1dcluster + �
X

i

Xi

critical point

δ=1
δ

hOstringi = h gs|Ostring| gsi

String order  
parameter

1

Cluster phase

[J. Pachos and M. Plenio, PRL 2004]

Ostring =
Y

i

Zi�1XiZi+1

= Z1Y2X3...XN�2YN�1Z2N



How computation is  
done in the g.s.?



Matrix product states

| i =
X

i1,...,iN

Ci1,...,iN |i1i|i2i · · · |iN i

• Description of quantum states are difficult in general.

exponentially many 
coefficients!

Fannes-Nachtergaele-Werner, Comm. Math. ‘92
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Matrix product states

| i =
X

i1,...,iN

Ci1,...,iN |i1i|i2i · · · |iN i

• Description of quantum states are difficult in general.

exponentially many 
coefficients!

what if the coefficients have a nice structure?

the coefficient are denoted by 
matrix products

| i =
X

i1,....,iN

hR|A[in] · · ·A[i2]A[i1]|Li ⇥ |i1i|i2i · · · |iN i
physical degree

virtual degree 
(correlation space)

A[0], A[1] : matrices to define the coefficient 
(in the following, they are 2×2 matrices)

Fannes-Nachtergaele-Werner, Comm. Math. ‘92
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Examples of MPS
• GHZ state: (|00...0i+ |11...1i)/

p
2

A[0] = |0ih0|, A[1] = |1ih1|
• W state:

(|100...0i+ |010...0i+ · · · |000...1i)/
p
N

A[0] = I, A[1] = |0ih1|

"
N�1Y

i=1

⇤i,i+1(Z)

#
|+i⌦N

all spin 
configuration

⇤(Z)|11i = �|11i
CZ put -1 for neighboring 11

• 1D cluster state: A[0] =
p
2|+ih0|, A[1] =

p
2|�ih1|

pick up -1 

A[1]A[1] = �
p
2|�ih1|



MBQC on 1D cluster model
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edge mode 
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MBQC on 1D cluster model
| clusi =

X

i1,...,iN

hR|A[iN ] · · ·A[i2]A[i1]|Li|i1i2...iN i

edge mode 
(degeneracy)

Projection on the 1st qubit in the basis
⇢

1p
2
(|0i± e�i�|1i)

�

1p
2
(h0|+ ei�h1|)| clusi

=
X

i2,...,iN

hR|A[iN ] · · ·A[i2](A[0] + ei�A[1])/
p
2|Li|i2...iN i

= He�i�Z/2

=
X

i2,...,iN

hR|A[iN ] · · ·A[i2]|L0i|i2...iN i |L0i := He�i�Z/2|Li

A[0] =
p
2|+ih0|, A[1] =

p
2|�ih1|



|Li He�i↵Z/2 He�i�Z/2 He�i�Z/2

• An arbitrary SU(2) rotation can be implemented.

• Byproduct operator due to randomness of the measurement 
outcomes can be canceled by adoptive measurements.

MBQC on 1D cluster model
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X
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δ=1
δ

hOstringi = h gs|Ostring| gsi

String order  
parameter

1

Cluster phase

[Pachos-Plenio, PRL ’04; Doherty-Barrett PRL ’09;  Fujii et al., PRL ’13]

MBQC on 1D cluster model



gate fidelity

F =
(1 + hOo

string

i)(1 + hOe

string

i)
4

Oo,e
string

=
Y

odd,even

Zi�1

XiZi+1

H 0 = H1dcluster + �
X

i

Xi

critical point

δ=1
δ

hOstringi = h gs|Ostring| gsi

String order  
parameter

1

Cluster phase

[Pachos-Plenio, PRL ’04; Doherty-Barrett PRL ’09;  Fujii et al., PRL ’13]

MBQC on 1D cluster model



MBQC on 1D cluster model
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Haldane’s conjecture

• Haldane’s conjecture on 1D Heisenberg anti-ferro model:

Odd half integer spins, 1/2, 3/2,…  
   → massless(gapless), critical

Integer spins, 1, 2,…  
   → massive (gapped), exponentially decaying correlation

~S
i

= (Sx

i

, Sy

i

, Sz

i

)HHeisenberg =
X

i

~Si · ~Si+1



AKLT-model

• Spin-1 1D AKLT (Affleck-Kennedy-Lieb-Tasaki) Hamiltonian 

HAKLT =
X

i

h
~Si · ~Si+1 + 1/3(~Si · ~Si+1)

2
i

The g.s. is gapped, exhibits exponentially decaying correlation, 
and is exactly given as an MPS!
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AKLT-state

spin-1/2 
singlet

projection  
to spin-1 triplet 
subspace 

edge state edge state
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2
! h1|
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r
2
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MBQC on AKLT state
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2×2 matrices

| AKLTi =
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i1,...,iN
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3
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3
Y
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MBQC is not deterministic in this case. 
← exponentially decaying correlation



More about MBQC on quantum 
many-body system

• Are measurements necessary?
→ not necessary. We can also employ  symmetry breaking field 
instead.→adiabatic teleportation.

[Bacon-Flammia, PRL 09; Renes et al, NJP 13]
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More about MBQC on quantum 
many-body system

• Are measurements necessary?
→ not necessary. We can also employ  symmetry breaking field 
instead.→adiabatic teleportation.

• Behavior of two-point correlation function and computational 
capability → exp. decaying t.p.c. is necessary and sufficient.

[KF-Morimae, PRA 12]

• Universal QC → 2D AKLT state with spin-3/2
[Chen et al., PRL ’09; Miyake, Ann. Phys. ’11; Wei et al., PRL ‘11]

• Universal QC at finite temperature → 3D AKLT-like states with
spin-5/2, spin-3/2 

[Li et al., PRL ’11; KF-Morimae, PRA ’12]

[Bacon-Flammia, PRL 09; Renes et al, NJP 13]



What is quantum order: 
   →property of ground state 
!
What is symmetry protected topological order 
   →ground state degeneracy protected  
    by symmetry  
!
How is SPTOs useful for QIP? 
   →They serve as resources for QIP.

Summary

Lecture 3: 
topological order in 2D many-body system 
and quantum error correction codes 



Quantum phase transition 
and information processing
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Quantum annealing/ adiabatic quantum computation
[Kadowaki-Nishimori PRE 98; Farhi et al., Science 01]
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Quantum annealing/ adiabatic quantum computation
[Kadowaki-Nishimori PRE 98; Farhi et al., Science 01]

easy 
to prepare

hard  
to find

h
QPT

energy

g.s.

1st

2nd

Gap closes polynomially  
or exponentailly! 

→quantum phase transition

H
tot

(s) = (1� s)H
trivial

+ sH
solution


